8 research outputs found

    Numerical investigation of atherosclerotic plaque rupture using optical coherence tomography imaging and XFEM

    Get PDF
    Myocardial infarction contributes to most fatalities in which atherosclerotic plaque disruption is the underlying pathology. From the mechanics view point, the pulsatile blood flow in the arteries resembles a fatigue environment and generates stresses that affect the rupture of the atherosclerotic plaque. In this context, patient-specific optical coherence tomography (OCT) was used to develop the fatigue crack growth behavior. The impact of location specific morphological features and their relative effect on plaque life were discussed. EXtended Finite Element Method (XFEM) and Paris’ Law were employed to investigate the fatigue crack growth. Twelve 2D slices from six patients were reconstructed for studying the fatigue crack growth behavior. Our results indicate that plaque life decreases with an increase in pulse pressure and 53.5% of the total cracks initiated at various locations on the lumen lead to rupture. 73.7% of the rupture locations did not have calcifications. Correlation between the location specific morphology and the rupture indicates that for a 1 mm increase in the fibrous cap thickness there is a large decrease in the odds of rupture [0.163 (0.073; 0.363)], p-value < 0.0001; and for a 1 mm2 increase of the calcification area, there is a decrease in the odds of rupture by 0.719 (0.619; 0.835), p-value < 0.0001. In conclusion, the XFEM technique can be used to study the fatigue behavior of the atherosclerotic plaque that depends on the combined effects of plaque constituents and their morphology. It may help to better assess plaque vulnerability and make more accurate predictions for plaque rupture

    Prediction of atherosclerotic plaque life – Perceptions from fatigue analysis

    Get PDF
    Cardiovascular diseases are the leading causes of morbidity and mortality globally. Heart disease and stroke contribute to most fatalities in which atherosclerotic plaque disruption is the underlying pathology. The pulsatile blood flow in the arteries generates mechanical stresses that affect the rupture of the atherosclerotic plaque. Fatigue failure being the accumulation of the damage due to repeated loading that occurs when the stresses are much lower than those needed to rupture the plaque with normal loading. Therefore, fracture mechanics concepts were used to investigate the impact of morphology and blood pressure on the plaque life. Incremental fatigue crack propagation simulations were performed on idealized geometries based on the maximum circumferential stress criteria by using a finite element solver. XFEM, which extends the standard finite element formulation by introducing additional enrichment functions was used to model the fatigue crack growth simulations. Paris’ Law was used to determine the fatigue crack growth rate. Cracks extended radially and fatigue crack growth rate increased with increase in pulse pressure. Further validation studies on the 3D printed arteries are necessary for better understanding the factors contributing to plaque rupture. The results could help in assessing the atherosclerotic plaque life under the fatigue environment of the cardiovascular system

    MRI-based mechanical analysis of carotid atherosclerotic plaque using a material-property-mapping approach: A material-property-mapping method for plaque stress analysis

    Get PDF
    Background and objective Atherosclerosis is a major underlying cause of cardiovascular conditions. In order to understand the biomechanics involved in the generation and rupture of atherosclerotic plaques, numerical analysis methods have been widely used. However, several factors limit the practical use of this information in a clinical setting. One of the key challenges in finite element analysis (FEA) is the reconstruction of the structure and the generation of a mesh. The complexity of the shapes associated with carotid plaques, including multiple components, makes the generation of meshes for biomechanical computation a difficult and in some cases, an impossible task. To address these challenges, in this study, we propose a novel material-property-mapping method for carotid atherosclerotic plaque stress analysis that aims to simplify the process. Methods The different carotid plaque components were identified and segmented using magnetic resonance imaging (MRI). For the mapping method, this information was used in conjunction with an in-house code, which provided the coordinates for each pixel/voxel and tissue type within a predetermined region of interest. These coordinates were utilized to assign specific material properties to each element in the volume mesh which provides a region of transition. The proposed method was subsequently compared to the traditional method, which involves creating a composed mesh for the arterial wall and plaque components, based on its location and size. Results The comparison between the proposed material-property-mapping method and the traditional method was performed in 2D, 3D structural-only, and fluid-structure interaction (FSI) simulations in terms of stress, wall shear stress (WSS), time-averaged WSS (TAWSS), and oscillatory shear index (OSI). The stress contours from both methods were found to be similar, although the proposed method tended to produce lower local maximum stress values. The WSS contours were also in agreement between the two methods. The velocity contours generated by the proposed method were verified against phase-contrast magnetic resonance imaging (MRI) measurements, for a higher level of confidence. Conclusion This study shows that a material-property-mapping method can effectively be used for analyzing the biomechanics of carotid plaques in a patient-specific manner. This approach has the potential to streamline the process of creating volume meshes for complex biological structures, such as carotid plaques, and to provide a more efficient and less labor-intensive method

    The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries

    Get PDF
    The initiation and progression of atherosclerosis, which is the main cause of cardiovascular diseases, correlate with local haemodynamic factors such as wall shear stress (WSS). Numerical simulations such as computational fluid dynamics (CFD) based on medical imaging have been employed to analyse blood flow in different arteries with and without luminal stenosis. Patient-specific CFD models, however, have assumptions on blood rheology. The differences in the calculated haemodynamic factors between different rheological models have not been fully evaluated. In this study, carotid magnetic resonance imaging (MRI) was performed on six patients with different degrees of carotid stenosis and two healthy volunteers. Using the 3D reconstructed carotid geometries and the patient-specific boundary conditions, CFD simulations were performed by applying a Newtonian and four non-Newtonian models (Carreau, Cross, Quemada and Power-law). WSS descriptors and pressure gradient were analysed and compared between the models. The differences in the maximum and the average oscillatory shear index between the Newtonian and the non-Newtonian models were lower than 12.7% and 12%, respectively. The differences in pressure gradient were also within 15%. The differences in the mean time-averaged WSS (TAWSS) between the Newtonian and Cross, Carreau and Power-law models were lower than 6%. In contrast, a higher difference (26%) was found in Quemada. For the low TAWSS, the differences from the Newtonian to the non-Newtonian models were much larger, in the range of 0.4–31% for Carreau, 3–22% for Cross, 5–51% for Quemada and 10–41% for Power-law. The study suggests that the assumption of a Newtonian model is reasonable when the overall flow pattern or the mean values of the WSS descriptors are investigated. However, the non-Newtonian model is necessary when the low TAWSS region is the focus, especially for arteries with severe stenosis

    The Need to Shift from Morphological to Structural Assessment for Carotid Plaque Vulnerability

    Get PDF
    Degree of luminal stenosis is generally considered to be an important indicator for judging the risk of atherosclerosis burden. However, patients with the same or similar degree of stenosis may have significant differences in plaque morphology and biomechanical factors. This study investigated three patients with carotid atherosclerosis within a similar range of stenosis. Using our developed fluid–structure interaction (FSI) modelling method, this study analyzed and compared the morphological and biomechanical parameters of the three patients. Although their degrees of carotid stenosis were similar, the plaque components showed a significant difference. The distribution range of time-averaged wall shear stress (TAWSS) of patient 2 was wider than that of patient 1 and patient 3. Patient 2 also had a much smaller plaque stress compared to the other two patients. There were significant differences in TAWSS and plaque stresses among three patients. This study suggests that plaque vulnerability is not determined by a single morphological factor, but rather by the combined structure. It is necessary to transform the morphological assessment into a structural assessment of the risk of plaque rupture

    Characterization of the Atherosclerotic Plaque Tissue

    Get PDF
    Cardiovascular diseases (CVD) are the leading causes of morbidity and mortality globally. Atherosclerosis is a chronic inflammatory CVD associated with the accumulation of plaque activated by the complex interactions between systemic, hemodynamic and biological factors. Thus, identification of plaque vulnerability is essential for the prevention of acute events and treatment of the disease. Despite, advanced imaging technologies, patient-specific computational simulations and availability of experimental data, there are still challenges in developing accurate risk stratification techniques. Therefore, this study aims to characterize the carotid plaque components structurally (histological analysis and immunostaining), mechanically (Nanoindentation tests) and chemically (Fourier Transform Infrared (FT-IR) micro-spectroscopy). The preliminary results showed that arterial remodelling is a dynamic interaction between mechanical forces and plaque progression. The biological content and composition of human atherosclerotic plaque tissue have been shown to significantly influence the mechanical response of samples. This data represents a step towards an enhanced understanding of the behaviour of human atherosclerotic plaque. Future large-scale experimental studies with more cross-sections along the length of the plaque could be used to develop a risk stratification technique

    Carotid Bifurcation With Tandem Stenosis—A Patient-Specific Case Study Combined in vivo Imaging, in vitro Histology and in silico Simulation

    Get PDF
    A patient-specific carotid bifurcation with tandem stenosis found at both internal carotid artery (ICA) and common carotid artery (CCA) was studied. The in vivo pre-carotid endarterectomy (pre-CEA) multi-spectral magnetic resonance imaging (MRI) were performed and in vitro post-CEA carotid plaque tissue sample was collected. MR imaging data and tissue sample staining histology were used to recognize the plaque components. Further, the computational fluid dynamics (CFD) were performed on four MR-based reconstructed 3D carotid bifurcation models (the patient-specific geometry with tandem stenosis and three presumptive geometries by removing the stenosis part). The flow and shear stress behavior affected by the tandem stenosis was analyzed. From the results of MR segmentation and histology analysis, plaque lipid pool and calcification were found at both ICA and CCA. From the result of CFD simulation, the flow shear stress behavior suggested the tandem stenosis as a more “dangerous” situation than a single-stenosis artery. Besides, the CFD results deduced that the stenosis at the CCA location formed initially and led to the subsequent formation of stenosis at ICA. This study suggests that when planning CEA, CFD simulation on the presumptive models could help clinicians to estimate the blood flow behavior after surgery. Particular attention should be paid to the case of tandem stenosis, as the local hemodynamic environment is more complex and treatment of one stenosis may lead to a variation in the hemodynamic loading on the second plaque, which may result in either a higher risk of plaque rupture or restenosis

    Reproducibility of the computational fluid dynamic analysis of a cerebral aneurysm monitored over a decade

    Get PDF
    Computational fluid dynamics (CFD) simulations are increasingly utilised to evaluate intracranial aneurysm (IA) haemodynamics to aid in the prediction of morphological changes and rupture risk. However, these models vary and differences in published results warrant the investigation of IA-CFD reproducibility. This study aims to explore sources of intra-team variability and determine its impact on the aneurysm morphology and CFD parameters. A team of four operators were given six sets of magnetic resonance angiography data spanning a decade from one patient with a middle cerebral aneurysm. All operators were given the same protocol and software for model reconstruction and numerical analysis. The morphology and haemodynamics of the operator models were then compared. The segmentation, smoothing factor, inlet and outflow branch lengths were found to cause intra-team variability. There was 80% reproducibility in the time-averaged wall shear stress distribution among operators with the major difference attributed to the level of smoothing. Based on these findings, it was concluded that the clinical applicability of CFD simulations may be feasible if a standardised segmentation protocol is developed. Moreover, when analysing the aneurysm shape change over a decade, it was noted that the co-existence of positive and negative values of the wall shear stress divergence (WSSD) contributed to the growth of a daughter sac
    corecore